Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 489
Filtrar
1.
Nat Commun ; 15(1): 2999, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589375

RESUMO

Ribose-5-phosphate (R5P) is a precursor for nucleic acid biogenesis; however, the importance and homeostasis of R5P in the intracellular parasite Toxoplasma gondii remain enigmatic. Here, we show that the cytoplasmic sedoheptulose-1,7-bisphosphatase (SBPase) is dispensable. Still, its co-deletion with transaldolase (TAL) impairs the double mutant's growth and increases 13C-glucose-derived flux into pentose sugars via the transketolase (TKT) enzyme. Deletion of the latter protein affects the parasite's fitness but is not lethal and is correlated with an increased carbon flux via the oxidative pentose phosphate pathway. Further, loss of TKT leads to a decline in 13C incorporation into glycolysis and the TCA cycle, resulting in a decrease in ATP levels and the inability of phosphoribosyl-pyrophosphate synthetase (PRPS) to convert R5P into 5'-phosphoribosyl-pyrophosphate and thereby contribute to the production of AMP and IMP. Likewise, PRPS is essential for the lytic cycle. Not least, we show that RuPE-mediated metabolic compensation is imperative for the survival of the ΔsbpaseΔtal strain. In conclusion, we demonstrate that multiple routes can flexibly supply R5P to enable parasite growth and identify catalysis by TKT and PRPS as critical enzymatic steps. Our work provides novel biological and therapeutic insights into the network design principles of intracellular parasitism in a clinically-relevant pathogen.


Assuntos
Toxoplasma , Toxoplasma/metabolismo , Difosfatos/metabolismo , Ribosemonofosfatos/metabolismo , Glicólise , Via de Pentose Fosfato
2.
Infect Dis Poverty ; 13(1): 28, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610035

RESUMO

BACKGROUND: Despite the increasing focus on strengthening One Health capacity building on global level, challenges remain in devising and implementing real-world interventions particularly in the Asia-Pacific region. Recognizing these gaps, the One Health Action Commission (OHAC) was established as an academic community for One Health action with an emphasis on research agenda setting to identify actions for highest impact. MAIN TEXT: This viewpoint describes the agenda of, and motivation for, the recently formed OHAC. Recognizing the urgent need for evidence to support the formulation of necessary action plans, OHAC advocates the adoption of both bottom-up and top-down approaches to identify the current gaps in combating zoonoses, antimicrobial resistance, addressing food safety, and to enhance capacity building for context-sensitive One Health implementation. CONCLUSIONS: By promoting broader engagement and connection of multidisciplinary stakeholders, OHAC envisions a collaborative global platform for the generation of innovative One Health knowledge, distilled practical experience and actionable policy advice, guided by strong ethical principles of One Health.


Assuntos
Saúde Única , Animais , Ásia , Fortalecimento Institucional , Políticas , Zoonoses/prevenção & controle
3.
Foods ; 13(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38611409

RESUMO

Luteolin (LUT) is a fat-soluble flavonoid known for its strong antioxidant and anti-inflammatory properties. Nonetheless, its use in the food industry has been limited due to its low water solubility and bioavailability. In this study, hyaluronic acid, histidine, and luteolin were self-assembled to construct tubular network hydrogels (HHL) to improve the gastrointestinal stability, bioavailability, and stimulation response of LUT. As anticipated, the HHL hydrogel's mechanical strength and adhesion allow it to withstand the challenging gastrointestinal environment and effectively extend the duration of drug presence in the body. In vivo anti-inflammatory experiments showed that HHL hydrogel could successfully alleviate colitis induced by dextran sulfate sodium (DSS) in mice by reducing intestinal inflammation and restoring the integrity of the intestinal barrier. Moreover, HHL hydrogel also regulated the intestinal microorganisms of mice and promoted the production of short-chain fatty acids. The HHL hydrogel group demonstrated a notably superior treatment effect compared to the LUT group alone. The hydrogel delivery system is a novel method to improve the absorption of LUT, increasing its bioavailability and enhancing its pharmaceutical effects.

4.
iScience ; 27(4): 109563, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38623332

RESUMO

Cryptosporidium hominis and Cryptosporidium parvum are major causes of severe diarrhea. Comparative studies of them are hampered by the lack of effective cultivation and cryopreservation methods, especially for C. hominis. Here, we describe adapted murine enteroids for the cultivation and complete development of host-adapted C. parvum and C. hominis subtypes, producing oocysts infectious to mice. Using the system, we developed a cryopreservation method for Cryptosporidium isolates. In comparative RNA-seq analyses of C. hominis cultures, the enteroid system generated significantly more host and pathogen responses than the conventional HCT-8 cell system. In particular, the infection was shown to upregulate PI3K-Akt, Ras, TNF, NF-κB, IL-17, MAPK, and innate immunity signaling pathways and downregulate host cell metabolism, and had significantly higher expression of parasite genes involved in oocyst formation. Therefore, the enteroid system provides a valuable tool for comparative studies of the biology of divergent Cryptosporidium species and isolates.

5.
Acta Trop ; 253: 107175, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492874

RESUMO

Cyclospora cayetanensis (C. cayetanensis) is a significant pathogen that causes diarrheal illness and causes large foodborne diarrhea outbreaks in the USA and Canada. However, there is currently a lack of published meta-analysis on the prevalence of C. cayetanensis infection in the global population. A real estimation of a disease prevalence should always be done on the basis of studies designed for that purpose. We conducted a comprehensive search of various databases for articles pertaining to the prevalence of C. cayetanensis infection in humans, spanning from the inception of these databases to March 10, 2023. Utilizing a random effects model, we estimated the prevalence of C. cayetanensis infection in humans. Our analysis included a total of 150 datasets sourced from 42 different countries, which were ultimately selected for the final quantitative assessment. The prevalence of C. cayetanensis infection in humans worldwide was estimated to be 3.4 % (5636/166,611). Notably, Africa exhibited the highest prevalence rate at 5.9 % (606/11,068). Further subgroup analysis revealed a significantly higher infection rate in humans residing in low-income countries (7.6 %, 83/921) compared to those in lower-middle-income countries (4.8 %, 3280/48,852), upper-middle-income countries (2.9 %, 2194/99,419), and high-income countries (0.4 %, 79/17,419). The results indicate that the global prevalence of C. cayetanensis infection in humans is relatively low, despite its extensive geographical distribution and children were found to be more susceptible to C. cayetanensis infection compared to those adults. Sensitivity analysis revealed that one study significantly affects the prevalence of C. cayetanensis, which was adjusted to 2.9 % (4017/160,049; 95 % CI: 2.7-3.1 %) by excluding this study. The findings highlight the relatively high prevalence of C. cayetanensis infection in low-income countries and among humans with diarrhea, particularly in Africa. Consequently, routine surveillance for intestinal protozoa is crucial in these regions.


Assuntos
Cyclospora , Ciclosporíase , Humanos , África/epidemiologia , Ciclosporíase/epidemiologia , Ciclosporíase/complicações , Ciclosporíase/parasitologia , Diarreia/parasitologia , Fezes/parasitologia , Prevalência
6.
Eur J Protistol ; 93: 126066, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442435

RESUMO

The zoonotic potential of the protist parasites Cryptosporidium spp. and Giardia duodenalis in amphibians and reptiles raises public health concerns due to their growing popularity as pets. This review examines the prevalence and diversity of these parasites in wild and captive amphibians and reptiles to better understand the zoonotic risk. Research on Giardia in both groups is limited, and zoonotic forms of Cryptosporidium or Giardia have not been reported in amphibians. Host-adapted Cryptosporidium species dominate in reptiles, albeit some reptiles have been found to carry zoonotic (C. hominis and C. parvum) and rodent-associated (C. tyzzeri, C. muris and C. andersoni) species, primarily through mechanical carriage. Similarly, the limited reports of Giardia duodenalis (assemblages A, B and E) in reptiles may also be due to mechanical carriage. Thus, the available evidence indicates minimal zoonotic risk associated with these organisms in wild and captive frogs and reptiles. The exact transmission routes for these infections within reptile populations remain poorly understood, particularly regarding the importance of mechanical carriage. Although the risk appears minimal, continued research and surveillance efforts are necessary to gain a more comprehensive understanding of the transmission dynamics and ultimately improve our ability to safeguard human and animal health.


Assuntos
Criptosporidiose , Cryptosporidium , Giardia lamblia , Giardíase , Animais , Humanos , Giardíase/epidemiologia , Giardíase/veterinária , Giardíase/parasitologia , Criptosporidiose/epidemiologia , Criptosporidiose/parasitologia , Zoonoses/epidemiologia , Zoonoses/parasitologia , Anuros , Répteis , Prevalência , Fezes/parasitologia
7.
Int J Parasitol ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492779

RESUMO

Cryptosporidium spp. are important diarrhea-associated pathogens in humans and livestock. Among the known species, Cryptosporidium xiaoi, which causes cryptosporidiosis in sheep and goats, was previously recognized as a genotype of the bovine-specific Cryptosporidium bovis based on their high sequence identity in the ssrRNA gene. However, the lack of genomic data has limited characterization of the genetic differences between the two closely related species. In this study, we sequenced the genomes of two C. xiaoi isolates and performed comparative genomic analysis to identify the sequence uniqueness of this ovine-adapted species compared with other Cryptosporidium spp. Our results showed that C. xiaoi is genetically related to C. bovis as shown by their 95.8% genomic identity and similar gene content. Consistent with this, both C. xiaoi and C. bovis appear to have fewer genes encoding mitochondrial metabolic enzymes and invasion-related protein families. However, they appear to possess several species-specific genes. Further analysis indicates that the sequence differences between these two Cryptosporidium spp. are mainly in 24 highly polymorphic genes, half of which are located in the subtelomeric regions. Some of these subtelomeric genes encode secretory proteins that have undergone positive selection. In addition, the genomes of two C. xiaoi isolates, identified as subtypes XXIIIf and XXIIIh, share 99.9% nucleotide sequence identity, with six highly divergent genes encoding putative secretory proteins. Therefore, these species-specific genes and sequence polymorphism in subtelomeric genes probably contribute to the different host preference of C. xiaoi and C. bovis.

8.
PeerJ ; 12: e17035, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410799

RESUMO

Objective: To investigate the effects of bromine domain protein 4 (BRD4) inhibitor JQ1 on the expression profile of super-enhancer-related lncRNAs (SE-lncRNAs) and mRNAs in cervical cancer (CC) HeLa-cells. Methods: The CCK8 method was implemented to detect the inhibitory effect of JQ1 on HeLa cells and explore the best inhibitory concentration. Whole transcriptome sequencing was performed to detect the changes of lncRNAs and mRNAs expression profiles in cells of the JQ1 treatment group and control group, respectively. The differentially expressed SE-lncRNAs were obtained by matching, while the co-expressed mRNAs were obtained by Pearson correlation analysis. Results: The inhibitory effect of JQ1 on HeLa cell proliferation increased significantly with increasing concentration and treatment time (P < 0.05). Under the experimental conditions of three concentrations of 0.01, 0.1 and 1 µmol/L of JQ1 on HeLa cells at 24, 48, 72 and 120 h, 1 µmol/L of JQ1 at 72 and 120 h had the same cell viability and the strongest cell proliferation inhibition. In order to understand the inhibitory mechanism of JQ1 on HeLa cells, this study analyzed the expression profile differences from the perspective of SE-lncRNAs and mRNAs. A total of 162 SE-lncRNAs were identified, of which 8 SE-lncRNAs were down-regulated and seven SE-lncRNAs were up-regulated. A total of 418 differentially expressed mRNAs related to SE-lncRNAs were identified, of which 395 mRNAs had positive correlation with 12 SE-lncRNAs and 408 mRNAs had negative correlation with 15 SE-lncRNAs. Conclusion: JQ1 can significantly inhibit the proliferation of HeLa cells and affect the expression profile of SE-lncRNAs and mRNAs.


Assuntos
RNA Longo não Codificante , Neoplasias do Colo do Útero , Feminino , Humanos , Células HeLa , Neoplasias do Colo do Útero/tratamento farmacológico , Proteínas Nucleares/genética , Fatores de Transcrição/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Proteínas que Contêm Bromodomínio , Proteínas de Ciclo Celular/genética
9.
Water Res ; 254: 121333, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38402753

RESUMO

The IOWA strain of Cryptosporidium parvum is widely used in studies of the biology and detection of the waterborne pathogens Cryptosporidium spp. While several lines of the strain have been sequenced, IOWA-II, the only reference of the original subtype (IIaA15G2R1), exhibits significant assembly errors. Here we generated a fully assembled genome of IOWA-CDC of this subtype using PacBio and Illumina technologies. In comparative analyses of seven IOWA lines maintained in different laboratories (including two sequenced in this study) and 56 field isolates, IOWA lines (IIaA17G2R1) with less virulence had mixed genomes closely related to IOWA-CDC but with multiple sequence introgressions from IOWA-II and unknown lineages. In addition, the IOWA-IIaA17G2R1 lines showed unique nucleotide substitutions and loss of a gene associated with host infectivity, which were not observed in other isolates analyzed. These genomic differences among IOWA lines could be the genetic determinants of phenotypic traits in C. parvum. These data provide a new reference for comparative genomic analyses of Cryptosporidium spp. and rich targets for the development of advanced source tracking tools.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Humanos , Cryptosporidium parvum/genética , Cryptosporidium/genética , Genômica , Virulência
10.
Acta Trop ; 253: 107160, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38408590

RESUMO

Enterocytozoon bieneusi features high genetic diversity among host species and environmental sources and over 500 genotypes in 11 phylogenetic groups have been defined. Here we investigated 291 small rodents in Heilongjiang province, northeast China, for the presence of E. bieneusi by PCR of the ribosomal internal transcribed spacer (ITS). Nine of 60 (15.0 %) gray squirrels from a park in Harbin, 120 of 201 (59.7 %) guinea pigs from a pet shop in Harbin, and two of 30 (6.7 %) peridomestic rats from a pasture in Qiqihar were positive for the parasite. Six known genotypes (EbpB, SCC-1, SCC-2, D, S7 and HLJ-CP1) and two novel genotypes (NESQ1 and NEGP1) were identified by sequence analysis of the ITS, with EbpB, SCC-1, SCC-2 and NESQ1 found in squirrels, D, S7 and NEGP1 in guinea pigs, and EbpB and HLJ-CP1 in rats. Widespread distribution of human-infective Group 10 genotype S7 and Group 1 genotype D in guinea pigs raised our concerns about the importance of pet animals as zoonotic reservoirs of microsporidiosis. Co-occurrence of Group 1 genotypes D and HLJ-CP1 in cancer patients and rodents in Heilongjiang indicated a possibility of zoonotic transmission. The host range of Group 1 genotype EbpB previously considered pig-adapted was extended. A potential variant of genotype S7, namely NESQ1, went into the existing Group 10 in phylogenetic analysis. The other new genotype, NEGP1, was clustered in an undefined clade we proposed as Group 15. With the emerging epidemiologic evidence, the host specificity of existing E. bieneusi genotypes is now being challenged.


Assuntos
Enterocytozoon , Microsporidiose , Humanos , Animais , Cobaias , Ratos , Zoonoses/parasitologia , Filogenia , Enterocytozoon/genética , Prevalência , Fezes/parasitologia , Genótipo , Sciuridae , Microsporidiose/epidemiologia , Microsporidiose/veterinária , China/epidemiologia , DNA Espaçador Ribossômico/genética
11.
Parasit Vectors ; 17(1): 65, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360646

RESUMO

BACKGROUND: Cryptosporidium spp. are common protozoa causing diarrhea in humans and animals. There are currently only one FDA-approved drug and no vaccines for cryptosporidiosis, largely due to the limited knowledge of the molecular mechanisms involved in the invasion of the pathogens. Previous studies have shown that GP60, which is cleaved into GP40 and GP15 after expression, is an immunodominant mucin protein involved in the invasion of Cryptosporidium. The protein is highly O-glycosylated, and recombinant proteins expressed in prokaryotic systems are non-functional. Therefore, few studies have investigated the function of GP40 and GP15. METHODS: To obtain recombinant GP40 with correct post-translational modifications, we used CRISPR/Cas9 technology to insert GP40 and GP15 into the UPRT locus of Toxoplasma gondii, allowing heterologous expression of Cryptosporidium proteins. In addition, the Twin-Strep tag was inserted after GP40 for efficient purification of GP40. RESULTS: Western blotting and immunofluorescent microscopic analyses both indicated that GP40 and GP15 were stably expressed in T. gondii mutants. GP40 localized not only in the cytoplasm of tachyzoites but also in the parasitophorous vacuoles, while GP15 without the GPI anchor was expressed only in the cytoplasm. In addition, a large amount of recTgGP40 was purified using Strep-TactinXT supported by a visible band of ~ 50 kDa in SDS-PAGE. CONCLUSIONS: The establishment of a robust and efficient heterologous expression system of GP40 in T. gondii represents a novel approach and concept for investigating Cryptosporidium mucins, overcoming the limitations of previous studies that relied on unstable transient transfection, which involved complex steps and high costs.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Toxoplasma , Humanos , Animais , Cryptosporidium parvum/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo , Proteínas de Protozoários/metabolismo , Mucinas/metabolismo , Glicoproteínas
12.
Parasitol Res ; 123(2): 137, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376760

RESUMO

Pangolins are susceptible to a variety of gastrointestinal nematodes due to their burrowing lifestyle and feeding habits, and few parasitic nematodes have been reported. Here, a Chinese pangolin with old wounds on its leg and tail was rescued from the Heyuan City, Guangdong Province. The cox1 and SSU rRNA of the worms from the intestine of the Chinese pangolin had the highest sequence identity of 89.58% and 97.95% to the species in the infraorder Spiruromorpha. The complete mitogenome of the worm was further assembled by next-generation sequencing, with a size of 13,708 bp and a GC content of 25.6%. The worm mitogenome had the highest sequence identity of 78.56% to that of Spirocerca lupi, sharing the same gene arrangement with S. lupi and some species in other families under Spiruromorpha. However, the mitogenome between the worm and S. lupi showed differences in codon usage of PCGs, sequences of NCR, and tRNA secondary structures. Phylogenetic analysis showed that the worm mitogenome was clustered with S. lupi in the family Thelaziidae to form a separate branch. However, it is still difficult to identify the worm in the family Thelaziidae because the species in the family Thelaziidae are confused, specifically S. lupi and Thelazia callipaeda in the family Thelaziidae were separated and grouped with species from other families. Thus, the parasitic nematode from the Chinese pangolin may be a novel species in Spiruromorpha and closely related to S. lupi. This study enriches the data on gastrointestinal nematodes in the Chinese pangolin.


Assuntos
Genoma Mitocondrial , Espirurídios , Thelazioidea , Humanos , Animais , Pangolins , Filogenia , Sequenciamento de Nucleotídeos em Larga Escala
13.
Parasit Vectors ; 17(1): 94, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419103

RESUMO

BACKGROUND: Gastrointestinal tract (GIT) nematodes prefer to live in the intestines of wild animals, causing damage and even death, and posing a zoonotic risk. The polyparasitism of GIT nematodes results in the complex dynamics of the nematode communities that occur naturally in wild animals. However, the nematode community in captive wild animals is poorly understood. METHODS: We combined  microscopic examination and amplicon sequencing for community diversity. RESULTS: We characterized GIT nematode assemblages to one order, one family, four genera, and ten species, in 512 fecal samples of 121 species from captive wild animals in southern China. The positive rate of GIT nematodes was 20.7% (106/512), including 42.3% (11/26) in reptiles, 26.5% (39/147) in herbivores, 25.0% (25/100) in non-human primates, 20.0% (5/25) in omnivores, 12.2% (9/74) in carnivores, and 12.1% (17/140) in avians. The dominant nematodes were Haemonchus contortus in herbivores and Trichuris species in primates. The nematode communities of arboreal primates differed from their terrestrial counterparts, reflecting both host phylogeny and ecological constraints. Soil-transmitted Strongyloides species were widespread throughout the herbivore, primate, avian, and carnivore communities, and tended to infect omnivorous primates and terrestrial herbivores. In addition, new Trichuris and Heterakis species were found in the nematode communities of captive porcupines and peafowls. CONCLUSION: This study highlights the variation in the composition of the GIT nematode community and strengthens the attention to the harms induced by zoonotic nematodes and co-infective nematodes with low species richness.


Assuntos
Animais Selvagens , Nematoides , Animais , Solo , Trichuris , Primatas
14.
Vet Parasitol ; 327: 110151, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422710

RESUMO

Rabbits are highly abundant in many countries and can serve as reservoirs of diseases for a diversity of pathogens including the enteric protozoan parasites, Cryptosporidium and Giardia. Both parasites shed environmentally robust environmental stages (oo/cysts) and have been responsible for numerous waterborne outbreaks of diseases. Cryptosporidium hominis and C. parvum are responsible for most infections in humans, while Giardia duodenalis assemblages A and B, cause most human cases of giardiasis. Cryptosporidium cuniculus, the dominant species infecting rabbits, is the only spceies other than C. hominis and C. parvum to have caused a waterborne outbreak of gastritis, which occurred in the United Kingdom in 2008. This review examines the prevalence of Cryptosporidium and Giardia species in rabbits to better understand the public health risks of contamination of water sources with Cryptosporidium and Giardia oo/cysts from rabbits. Despite the abundance of C. cuniculus in rabbits, reports in humans are relatively rare, with the exception of the United Kingdom and New Zealand, and reports of C. cuniculus in humans from the United Kingdom have declined substantially since the 2008 outbreak. Subtyping of C. cuniculus has supported the potential for zoonotic transmission. Relatively few studies have been conducted on Giardia, but assemblage B dominates. However, improved typing methods are required to better understand the transmission dynamics of Giardia assemblages in rabbits. Similarly, it is not well understood if pet rabbits or contaminated water are the main source of C. cuniculus infections in humans. Well-planned studies using high-resolution typing tools are required to understand the transmission dynamics better and quantify the public health risk of Cryptosporidium and Giardia from rabbits.


Assuntos
Criptosporidiose , Cryptosporidium , Cuniculidae , Cistos , Giardia lamblia , Giardíase , Doenças dos Roedores , Coelhos , Humanos , Animais , Giardíase/epidemiologia , Giardíase/veterinária , Giardíase/parasitologia , Giardia , Criptosporidiose/parasitologia , Zoonoses/parasitologia , Água/parasitologia , Fezes/parasitologia , Cistos/veterinária
15.
Water Res ; 251: 121165, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38290188

RESUMO

Rodents represent the single largest group within mammals and host a diverse array of zoonotic pathogens. Urbanisation impacts wild mammals, including rodents, leading to habitat loss but also providing new resources. Urban-adapted (synanthropic) rodents, such as the brown rat (R. norvegicus), black rat (R. rattus), and house mouse (Mus musculus), have long successfully adapted to living close to humans and are known carriers of zoonotic pathogens. Two important enteric, zoonotic protozoan parasites, carried by rodents, include Cryptosporidium and Giardia. Their environmental stages (oocysts/cysts), released in faeces, can contaminate surface and wastewaters, are resistant to common drinking water disinfectants and can cause water-borne related gastritis outbreaks. At least 48 species of Cryptosporidium have been described, with C. hominis and C. parvum responsible for the majority of human infections, while Giardia duodenalis assemblages A and B are the main human-infectious assemblages. Molecular characterisation is crucial to assess the public health risk linked to rodent-related water contamination due to morphological overlap between species. This review explores the global molecular diversity of these parasites in rodents, with a focus on evaluating the zoonotic risk from contamination of water and wasterwater with Cryptosporidium and Giardia oocysts/cysts from synanthropic rodents. Analysis indicates that while zoonotic Cryptosporidium and Giardia are prevalent in farmed and pet rodents, host-specific Cryptosporidium and Giardia species dominate in urban adapted rodents, and therefore the risks posed by these rodents in the transmission of zoonotic Cryptosporidium and Giardia are relatively low. Many knowledge gaps remain however, and therefore understanding the intricate dynamics of these parasites in rodent populations is essential for managing their impact on human health and water quality. This knowledge can inform strategies to reduce disease transmission and ensure safe drinking water in urban and peri­urban areas.


Assuntos
Criptosporidiose , Cryptosporidium , Cistos , Água Potável , Giardíase , Camundongos , Humanos , Animais , Ratos , Qualidade da Água , Roedores , Giardíase/epidemiologia , Giardíase/parasitologia , Giardia , Fezes , Oocistos
16.
Animals (Basel) ; 14(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275800

RESUMO

Cryptosporidium spp. and Giardia duodenalis are the main non-viral causes of diarrhoea in humans and domestic animals globally. Comparatively, much less information is currently available in free-ranging carnivore species in general and in the endangered Iberian lynx (Lynx pardinus) in particular. Cryptosporidium spp. and G. duodenalis were investigated with molecular (PCR and Sanger sequencing) methods in individual faecal DNA samples of free-ranging and captive Iberian lynxes from the main population nuclei in Spain. Overall, Cryptosporidium spp. and G. duodenalis were detected in 2.4% (6/251) and 27.9% (70/251) of the animals examined, respectively. Positive animals to at least one of them were detected in each of the analysed population nuclei. The analysis of partial ssu rRNA gene sequences revealed the presence of rodent-adapted C. alticolis (n = 1) and C. occultus (n = 1), leporid-adapted C. cuniculus (n = 2), and zoonotic C. parvum (n = 2) within Cryptosporidium, and zoonotic assemblages A (n = 5) and B (n = 3) within G. duodenalis. Subgenotyping analyses allowed for the identification of genotype VaA19 in C. cuniculus (gp60 locus) and sub-assemblages AI and BIII/BIV in G. duodenalis (gdh, bg, and tpi loci). This study represents the first molecular description of Cryptosporidium spp. and G. duodenalis in the Iberian lynx in Spain. The presence of rodent/leporid-adapted Cryptosporidium species in the surveyed animals suggests spurious infections associated to the Iberian lynx's diet. The Iberian lynx seems a suitable host for zoonotic genetic variants of Cryptosporidium (C. parvum) and G. duodenalis (assemblages A and B), although the potential risk of human transmission is regarded as limited due to light parasite burdens and suspected low excretion of infective (oo)cysts to the environment by infected animals. More research should be conducted to ascertain the true impact of these protozoan parasites in the health status of the endangered Iberian lynx.

17.
Parasitol Res ; 123(1): 107, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38253768

RESUMO

Marsupials, inhabiting diverse ecosystems, including urban and peri-urban regions in Australasia and the Americas, intersect with human activities, leading to zoonotic spill-over and anthroponotic spill-back of pathogens, including Cryptosporidium and Giardia. This review assesses the current knowledge on the diversity of Cryptosporidium and Giardia species in marsupials, focusing on the potential zoonotic risks. Cryptosporidium fayeri and C. macropodum are the dominant species in marsupials, while in possums, the host-specific possum genotype dominates. Of these three species/genotypes, only C. fayeri has been identified in two humans and the zoonotic risk is considered low. Generally, oocyst shedding in marsupials is low, further supporting a low transmission risk. However, there is some evidence of spill-back of C. hominis into kangaroo populations, which requires continued monitoring. Although C. hominis does not appear to be established in small marsupials like possums, comprehensive screening and analysis are essential for a better understanding of the prevalence and potential establishment of zoonotic Cryptosporidium species in small marsupials. Both host-specific and zoonotic Giardia species have been identified in marsupials. The dominance of zoonotic G. duodenalis assemblages A and B in marsupials may result from spill-back from livestock and humans and it is not yet understood if these are transient or established infections. Future studies using multilocus typing tools and whole-genome sequencing are required for a better understanding of the zoonotic risk from Giardia infections in marsupials. Moreover, much more extensive screening of a wider range of marsupial species, particularly in peri-urban areas, is required to provide a clearer understanding of the zoonotic risk of Cryptosporidium and Giardia in marsupials.


Assuntos
Criptosporidiose , Cryptosporidium , Giardíase , Humanos , Animais , Giardia/genética , Giardíase/epidemiologia , Giardíase/veterinária , Cryptosporidium/genética , Criptosporidiose/epidemiologia , Ecossistema , Macropodidae
18.
Eur Arch Otorhinolaryngol ; 281(1): 419-425, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37673830

RESUMO

OBJECTIVE: The ultrasonic diagnosis of cervical and facial cystic masses, as well as cases of missed diagnosis and misdiagnosis, was examined, to improve the diagnosis of branchial cleft anomalies. METHODS: A retrospective analysis was conducted on 17 patients with branchial cleft cyst anomalies, including 11 males and 6 females, aged 12-53 years, with an average age of 33 ± 2 years, were unilateral single. All patients who underwent an ultrasound examination and image storage for retrospective analysis, and both longitudinal and transverse sections were scanned to observe the shape, size, boundary, peripheral relationship, and blood flow signal of the masses. All cases were examined with an enhanced CT scan, and pathological reports were generated. RESULTS: Among the 17 cases of branchial cleft anomalies, 15 cases were branchial cleft cysts, while one case involved fistula formation and one case involved sinus tract formation. Based on the type of branchial cleft, the first, second, and third cysts were classified in 4, 12, and 1 case, respectively. The sensitivity rate and specificity of ultrasonic diagnosis were 14/17 (82.4%) and 4/6 (66.7%), respectively. Ultrasonic characteristic analysis for the masses can be found in simple cystic masses or hypoechoic masses, most of them are of a regular shape and have a distinct boundary, and almost no blood flow signal. All patients who were misdiagnosed exhibited blood flow signals, including 1 patient with an abundant blood flow signal, 1 patient suspected of having ectopic thyroid with an abnormal function due to the rat-tail sign, 2 patients misdiagnosed as local inflammatory focus, and 1 patient misdiagnosed with tuberculous lymphadenitis. CONCLUSION: Ultrasound has a detection rate of up to 100% for cervical and facial masses, providing a fundamental determination of lesion characteristics and specific guidance for preoperative diagnosis. If the blood flow signals can be identified and carefully considered their peripheral relationship, the diagnostic rate can be improved.


Assuntos
Branquioma , Fístula , Neoplasias de Cabeça e Pescoço , Masculino , Feminino , Humanos , Animais , Ratos , Adulto , Branquioma/diagnóstico por imagem , Branquioma/cirurgia , Estudos Retrospectivos , Região Branquial/diagnóstico por imagem , Região Branquial/cirurgia , Região Branquial/anormalidades , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/cirurgia , Fístula/cirurgia , Ultrassonografia
19.
Sci Total Environ ; 912: 169032, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123098

RESUMO

Cryptosporidium and Giardia are important waterborne protozoan parasites that are resistant to disinfectants commonly used for drinking water. Wild birds, especially wild migratory birds, are often implicated in the contamination of source and wastewater with zoonotic diseases, due to their abundance near water and in urban areas and their ability to spread enteric pathogens over long distances. This review summarises the diversity of Cryptosporidium and Giardia in birds, with a focus on zoonotic species, particularly in wild and migratory birds, which is critical for understanding zoonotic risks. The analysis revealed that both avian-adapted and zoonotic Cryptosporidium species have been identified in birds but that avian-adapted Cryptosporidium species dominate in wild migratory birds. Few studies have examined Giardia species and assemblages in birds, but the non-zoonotic Giardia psittaci and Giardia ardeae are the most commonly reported species. The identification of zoonotic Cryptosporidium and Giardia in birds, particularly C. parvum and G. duodenalis assemblages A and B in wild migratory birds, is likely due to mechanical carriage or spillback from birds co-grazing pastures contaminated with C. parvum from livestock. Therefore, the role of wild migratory birds in the transmission of zoonotic Cryptosporidium and Giardia to source water is likely overestimated. To address knowledge gaps, it is important to conduct more extensive studies on the prevalence of Cryptosporidium and Giardia in a broader range of migratory wild birds. There is also a need to investigate the extent to which zoonotic infections with C. hominis/C. parvum and G. duodenalis assemblages A and B are mechanical and/or transient, and to assess the load and viability of zoonotic oo/cysts shed in avian faeces. Understanding the contribution of birds to zoonoses is essential for effective disease surveillance, prevention, and control.


Assuntos
Criptosporidiose , Cryptosporidium , Água Potável , Giardia lamblia , Giardíase , Animais , Giardia , Criptosporidiose/epidemiologia , Giardíase/epidemiologia , Giardíase/veterinária , Giardíase/parasitologia , Zoonoses/epidemiologia , Fezes , Aves
20.
Appl Opt ; 62(30): 8178-8183, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-38038115

RESUMO

In this paper, a polarization-insensitive sensor based on graphene electromagnetically induced transparency (EIT) is proposed. The device consists of two graphene orthogonal T-shaped structures. This T-shaped resonator produces transparent windows that largely overlap under x and y polarizations, and the results demonstrate its good polarization insensitivity. The device can accomplish detection performance with sensitivity higher than 4960 nm/RIU and figure of merit (FOM) greater than 11.4. Meanwhile, when the Fermi energy level of graphene changes from 0.5 to 0.8 eV, it enables arbitrary modulation of the operating frequency over a wide frequency range of about 4.5 terahertz in the mid-infrared band. Our work has the potential to significantly advance the area of biological molecular detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...